MODEL COMPLETENESS FOR FINITE EXTENSIONS OF p-ADIC FIELDS

نویسندگان

  • JAMSHID DERAKHSHAN
  • ANGUS MACINTYRE
  • Abraham Robinson
چکیده

We prove that the first-order theory of a finite extension of the field of p-adic numbers is model-complete in the language of rings, for any prime p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central extensions of p-adic algebraic groups by finite p-groups

Some problems on algebraic groups over global fields like the congruence subgroup problem involve the determination of topological central extensions of the adelic group which, in turn, leads naturally to the study of topological central extensions of p-adic Lie groups by finite groups like the group of roots of unity in the p-adic field. Moreover, central extensions of semisimple p-adic Lie gr...

متن کامل

Factoring Polynominals over p-Adic Fields

We give an efficient algorithm for factoring polynomials over finite algebraic extensions of the p-adic numbers. This algorithm uses ideas of Chistov’s random polynomial-time algorithm, and is suitable for practical implementation.

متن کامل

VALUATIONS OF p-ADIC REGULATORS OF CYCLIC CUBIC FIELDS

We compute the p-adic regulator of cyclic cubic extensions of Q with discriminant up to 1016 for 3 < p < 100, and observe the distribution of the p-adic valuation of the regulators. We find that for almost all primes the observation matches the model that the entries in the regulator matrix are random elements with respect to the obvious restrictions. Based on this random matrix model a conject...

متن کامل

THE TITS BUILDING AND AN APPLICATION TO ABSTRACT CENTRAL EXTENSIONS OF p-ADIC ALGEBRAIC GROUPS BY FINITE p-GROUPS

For a connected, semisimple, simply connected algebraic group G defined and isotropic over a field k, the corresponding Tits building is used to study central extensions of the abstract group G(k). When k is a nonArchimedean local field and A is a finite, abelian p-group where p is the characteristic of the residue field of k, then with G of k-rank at least 2, we show that the group H2(G(k), A)...

متن کامل

Quantifier Elimination in Tame Infinite p-ADIC Fields

We give an answer to the question as to whether quantifier elimination is possible in some infinite algebraic extensions of Qp (‘infinite p-adic fields’) using a natural language extension. The present paper deals with those infinite p-adic fields which admit only tamely ramified algebraic extensions (so-called tame fields). In the case of tame fields whose residue fields satisfy Kaplansky’s co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014